0=-16t^2+50t+72

Simple and best practice solution for 0=-16t^2+50t+72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+50t+72 equation:



0=-16t^2+50t+72
We move all terms to the left:
0-(-16t^2+50t+72)=0
We add all the numbers together, and all the variables
-(-16t^2+50t+72)=0
We get rid of parentheses
16t^2-50t-72=0
a = 16; b = -50; c = -72;
Δ = b2-4ac
Δ = -502-4·16·(-72)
Δ = 7108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7108}=\sqrt{4*1777}=\sqrt{4}*\sqrt{1777}=2\sqrt{1777}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{1777}}{2*16}=\frac{50-2\sqrt{1777}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{1777}}{2*16}=\frac{50+2\sqrt{1777}}{32} $

See similar equations:

| 8x=5360 | | 1/5=x/11 | | 14x+5=6x+35/ | | 3-2=5x+8 | | 2x/3-4=x/4+10 | | X^3+4x-26=0 | | 12y+13=25 | | -6/7(x-12)-5=31 | | 7y+3y-8=6y | | 8x−3=6x−9 | | 4+8x=8+4x | | (a+1)(a+2)+(-a-1)(a+3)=0 | | 1x=6/8 | | 4x+31=6x-21 | | 7n-11=15 | | 0.3d+20=0.2d+35 | | Y=5y+y-y | | f(0)=-3/4(0)-2 | | (2x+1)(3x+3)=6x2+9x+3 | | (80/0.25)-(80/x)=1 | | 3m2+2m-7=0 | | (5x/3)+2=x+8 | | 23x+5=25x+7 | | .25(x)=65,000 | | 78=x(x+7) | | 78=x(x=7) | | ŷ=84+13x | | ŷ=84+13x. | | (10y+15)(0,3-1,2y)=0 | | x2-4x-3=0 | | m2+5m+5=0 | | 1/4=(1/8+x)/2 |

Equations solver categories